Skip to main content

Posts

Some recent talks (Summer 2024)

My posting frequency has decreased since grad school, since while I'm spending about as much time learning as I always have, much more of my pedagogy these days ends up in papers. But I've given a few pedagogically-oriented talks recently that may be of interest to the people who read this blog. I gave a mini-course on "the algebraic approach" at Bootstrap 2024. The lecture notes can be found here , and videos are available here . The first lecture covers the basic tools of algebraic quantum field theory; the second describes the Faulkner-Leigh-Parrikar-Wang argument for the averaged null energy condition in Minkowski spacetime; the third describes recent developments on the entropy of semiclassical black holes, including my recent paper with Chris Akers . Before the paper with Chris was finished, I gave a general overview of the "crossed product" approach to black hole entropy at KITP. The video is available here . The first part of the talk goes back in ti

Envelopes of holomorphy and the timelike tube theorem

Complex analysis, as we usually learn it, is the study of differentiable functions from $\mathbb{C}$ to $\mathbb{C}$. These functions have many nice properties: if they are differentiable even once then they are infinitely differentiable; in fact they are analytic, meaning they can be represented in the vicinity of any point as an absolutely convergent power series; moreover at any point $z_0$, the power series has radius of convergence equal to the radius of the biggest disc centered at $z_0$ which can be embedded in the domain of the function. The same basic properties hold for differentiable functions in higher complex dimensions. If $\Omega$ is a domain --- i.e., a connected open set --- in $\mathbb{C}^n$, and $f : \Omega \to \mathbb{C}^n$ is once differentiable, then it is in fact analytic, and can be represented as a power series in a neighborhood of any point $z_*$, i.e., we have an expression like $$f(z) = \sum a_{k_1 \dots k_n} (z_1 - z_*)^{k_1} \dots (z_n - z_*)^{k_n}.$$ The

Stone's theorem

 Stone's theorem is the basic result describing group-like unitary flows on Hilbert space. If the map $t \mapsto U(t)$ is continuous in a sense we will make precise later, and each $U(t)$ is a unitary map on a Hilbert space $\mathcal{H},$ and we have $U(t+s)=U(t)U(s),$ then Stone's theorem asserts the existence of a (self-adjoint, positive definite, unbounded) operator $\Delta$ satisfying $U(t) = \Delta^{it}.$ This reduces the study of group-like unitary flows to the study of (self-adjoint, etc etc) operators. Quantum mechanically, it tells us that every group-like unitary evolution is generated by a time-independent Hamiltonian. This lets us study very general symmetry transformations in terms of Hamiltonians. The standard proof of Stone's theorem, which you'll see if you look at Wikipedia , involves trying to make sense of a limit like $\lim_{t \to 0} (U(t) - 1)/t$. However, I have recently learned of a beautiful proof of Stone's theorem that works instead by stud

Vector integration

Lately I've been thinking a lot about algebras of operators acting on a Hilbert space, since they provide an extremely useful tool for thinking about locality in quantum field theory. I'm working on a review article about Tomita-Takesaki modular theory to supplement my recent review on the type classification of von Neumann algebras . The core object of study in Tomita-Takesaki theory is a one-parameter group of unitary operators $\Delta^{it},$ generated by a single positive (often unbounded) operator $\Delta.$ In physics, the Tomita-Takesaki unitaries furnish a "hidden thermodynamic symmetry" of a physical state. A lot of interesting physics and mathematics can be learned by studying the analytic structure of the function $z \mapsto \Delta^{z}$ for generic complex $z,$ or of the function $z \mapsto \Delta^{z} |\psi\rangle$ for generic complex $z$ and some fixed state $|\psi\rangle.$ But in order to do this, we need to understand how to do complex analysis for operat