Skip to main content

Posts

Showing posts from April, 2022

Hilbert spaces of Majorana fermions

When we talk about fermions in quantum mechanics, we talk about two kinds: Dirac and Majorana. Both of these are supposed to have the property that if I create a fermion of type $1$ and then a fermion of type $2,$ the resulting state will be related by a minus sign to the state where I create a fermion of type $2$ and then a fermion of type $1.$ But there is a decision to make as to what should happen if we try to create two type-$1$ fermions. Dirac fermions are defined by the property that if you try to create two type-$1$ fermions, the state is completely annihilated to the zero vector. Majorana fermions are defined by the property that if you try to create two type-$1$ fermions, they annihilate one another and leave the total state unchanged. These properties are summarized by saying that the algebras of operators that create and annihilate the two different types of fermions should be different. The Dirac fermions have creation and annihilation operators $a_j, a_j^{\dagger}$ satisf