Skip to main content

Statement of purpose

Right now I'm a fourth year PhD student in theoretical physics, working at the interface of quantum information and quantum gravity. Many of the subjects I end up learning for my research lack good introductory references. The physics subjects are often explained in research papers that were written decades ago in now-outdated notation and terminology; the math subjects are explained in textbooks for mathematicians that mostly lack physical intuition. For aspiring physicists like me, it can be helpful to have concepts that are well-understood by experts re-interpreted and re-explained in concise, pedagogical terms.

While learning new math and physics subjects for my research, I often end up writing detailed "explainers" for myself that I think fit this niche. This blog will serve mostly as a repository for these explainers. I'll post explainers here as I write them in the hopes that they might be useful to other researchers trying to penetrate formidable subjects. At the very least, it'll be helpful for me to have this blog as a database I can pull from when a younger graduate student asks for references on a subject. Post types will likely include:

  • Detailed notes on fundamental math/physics concepts;
  • Summaries of interesting papers I read;
  • Explainers of my own papers, if I think they'll be helpful;
  • Videos and PDF notes of talks I give, both pedagogical and research-focused.

The selection of topics will depend entirely on what things I become interested in learning. My perspective is very geometric; I could accurately be called a "mathematical physicist," and my explainers prioritize visual or geometric intuition over computational power. I hope these notes will be helpful for people who think like I do.

Comments

Popular posts from this blog

Stone's theorem

 Stone's theorem is the basic result describing group-like unitary flows on Hilbert space. If the map $t \mapsto U(t)$ is continuous in a sense we will make precise later, and each $U(t)$ is a unitary map on a Hilbert space $\mathcal{H},$ and we have $U(t+s)=U(t)U(s),$ then Stone's theorem asserts the existence of a (self-adjoint, positive definite, unbounded) operator $\Delta$ satisfying $U(t) = \Delta^{it}.$ This reduces the study of group-like unitary flows to the study of (self-adjoint, etc etc) operators. Quantum mechanically, it tells us that every group-like unitary evolution is generated by a time-independent Hamiltonian. This lets us study very general symmetry transformations in terms of Hamiltonians. The standard proof of Stone's theorem, which you'll see if you look at Wikipedia , involves trying to make sense of a limit like $\lim_{t \to 0} (U(t) - 1)/t$. However, I have recently learned of a beautiful proof of Stone's theorem that works instead by stud

Vector integration

Lately I've been thinking a lot about algebras of operators acting on a Hilbert space, since they provide an extremely useful tool for thinking about locality in quantum field theory. I'm working on a review article about Tomita-Takesaki modular theory to supplement my recent review on the type classification of von Neumann algebras . The core object of study in Tomita-Takesaki theory is a one-parameter group of unitary operators $\Delta^{it},$ generated by a single positive (often unbounded) operator $\Delta.$ In physics, the Tomita-Takesaki unitaries furnish a "hidden thermodynamic symmetry" of a physical state. A lot of interesting physics and mathematics can be learned by studying the analytic structure of the function $z \mapsto \Delta^{z}$ for generic complex $z,$ or of the function $z \mapsto \Delta^{z} |\psi\rangle$ for generic complex $z$ and some fixed state $|\psi\rangle.$ But in order to do this, we need to understand how to do complex analysis for operat

The stress-energy tensor in field theory

I came to physics research through general relativity, where the stress energy tensor plays a very important role, and where it has a single unambiguous meaning as the functional derivative of the theory with respect to metric perturbations. In flat-space quantum field theory, some texts present the stress tensor this way, while some present the stress tensor as a set of Noether currents associated with spatial translations. These definitions are usually presented as being equivalent, or rather, equivalent up to the addition of some total derivative that doesn't affect the physics. However, this is not actually the case. The two stress tensors differ by terms that can be made to vanish classically, but that have an important effect in the quantum theory. In particular, the Ward identities of the two different stress tensors are different. This has caused me a lot of grief over the years, as I've tried to compare equations between texts that use two different definitions of the